Динамический диапазон в цифровой фотографии

Динамический диапазон в фотографии описывает соотношение между максимальной и минимальной измеримой интенсивностью света (белым и чёрным, соответственно). В природе не существует абсолютно белого или чёрного — только различные степени интенсивности источника света и отражательной способности предмета. В силу этого концепция динамического диапазона усложняется и зависит от того, описываете ли вы записывающий прибор (такой как камера или сканер), воспроизводящий (такой как отпечаток или дисплей компьютера) или собственно предмет.

Камера LCD Принтер
Камера → Устройство отображения → Принтер

Как и при управлении цветом, каждое устройство в приведенной выше цепи передачи изображения имеет свой собственный динамический диапазон. В отпечатках и дисплеях ничто не может стать ярче, чем белизна бумаги или максимальная интенсивность пикселя, соответственно. По сути, ещё один прибор, который не был упомянут выше, это наши глаза, у которых тоже есть свой собственный динамический диапазон. Передача информации из изображения между устройствами таким образом может повлиять на его воспроизведение. Следовательно, концепция динамического диапазона полезна для относительного сравнения исходной сцены, вашей камеры и изображения на вашем экране или на отпечатке.

Влияние света: освещённость и отражение

Интенсивность освещения может быть описана в терминах падающего и отражённого света; каждый из них вносит свою лепту в динамический диапазон сцены (см. статью «Как цифровые камеры замеряют экспозицию»).

Сильное отражение Неравномерно падающий свет

Сцены с высокими вариациями яркостей отражённого света, например, содержащие чёрные объекты вдобавок к сильным отражениям, могут в действительности иметь более широкий динамический диапазон, чем сцены с большой вариативностью падающего света. В любом из этих случаев фотографии могут запросто превысить динамический диапазон вашей камеры, особенно если не следить за экспозицией.

Точное измерение интенсивности света, или освещённости, следовательно, является критическим для оценки динамического диапазона. Здесь мы используем термин «освещённость», чтобы определить исключительно падающий свет. Как освещённость, так и яркость обычно измеряются в канделах на квадратный метр (кд/м2). Приблизительные значения для часто встречающихся источников освещения приведены ниже.



Здесь мы видим, что возможны большие вариации в падающем свете, поскольку вышеприведенная диаграмма отградуирована в степенях десяти. Если сцена неравномерно освещена как прямым, так и рассеянным солнечным светом, одно это может невероятно расширить динамический диапазон сцены (как видно из примера с закатом в каньоне с частично освещённой скалой).

Цифровые камеры

Несмотря на то, что физический смысл динамического диапазона в реальном мире — это всего лишь соотношение между наиболее и наименее освещёнными участками (контраст), его определение становится более сложным при описании измерительных приборов, таких как цифровые камеры и сканеры. Вспомним из статьи о сенсорах цифровых камер, что свет сохраняется каждым пикселем в своего рода термосе. Размер каждого такого термоса, в дополнение к тому как оценивается его содержимое, и определяет динамический диапазон цифровой камеры.

Уровень чёрного
(ограничен шумом)
Уровень белого
(полный термос)
Меньший уровень белого
(термос малого объёма)

Фотопиксели удерживают фотоны, как термосы сохраняют воду. Следовательно, если термос переполняется, вода выливается наружу. Переполненный фотопиксель называют насыщенным, и он неспособен распознать дальнейшее поступление фотонов — тем самым определяя уровень белого камеры. Для идеальной камеры её контраст в таком случае определялся бы числом фотонов, которое может быть накоплено каждым из фотопикселей, поделенным на минимальную измеримую интенсивность света (один фотон). Если в пикселе может сохраниться 1000 фотонов, контрастность будет 1000:1. Поскольку ячейка большего размера может накопить больше фотонов, у цифровых зеркальных камер динамический диапазон обычно больше, чем у компактных камер (в силу большего размера пикселей).

Примечание: в некоторых цифровых камерах существует дополнительная настройка низкого ISO, которая снижает шум, но также и сужает динамический диапазон. Это происходит потому, что такая настройка в действительности переэкспонирует изображения на одну ступень и впоследствии обрезает яркости — увеличивая таким способом светосигнал. Примером могут служить многие камеры Canon, которые имеют возможность снимать в ISO 50 (ниже обычного ISO 100).

В действительности потребительские камеры не могут подсчитать фотоны. Динамический диапазон ограничен наиболее тёмным тоном, для которого более невозможно различить текстуру — его называют уровнем чёрного. Уровень чёрного ограничен тем, насколько точно можно измерить сигнал в каждом фотопикселе и, следовательно, ограничен снизу уровнем шума. В результате динамический диапазон как правило увеличивается при снижении числа ISO, а также у камер с меньшей погрешностью измерения.

Примечание: даже если бы фотопиксель мог подсчитать отдельные фотоны, подсчёт тем не менее был бы ограничен фотонным шумом. Фотонный шум создаётся статистическими колебаниями и представляет теоретический минимум шума. Итоговый шум является суммой фотонного шума и погрешности считывания.

В целом, динамический диапазон цифровой камеры таким образом может быть описан как соотношение между максимальной (при насыщении пикселя) и минимальной (на уровне погрешности считывания) измеримой интенсивностью света. Наиболее распространённой единицей измерения динамического диапазона цифровых камер является f-ступень, которая описывает разницу в освещённости в степенях числа 2. Контраст 1024:1 в таком случае может быть также описан как динамический диапазон из 10 f-ступеней (поскольку 210 = 1024).В зависимости от применения, каждая f-ступень может быть также описана как «зона» или «eV».

Сканеры

Сканеры оцениваются по тому же соотношению насыщенности и шума, как и динамический диапазон цифровых камер, за исключением того, что они описываются в терминах плотности (D). Это удобно, поскольку концептуально аналогично тому, как пигменты создают цвет на отпечатке, как показано ниже.

Слабое отражение
(высокая плотность)
Сильное отражение
(низкая плотность)
Высокая плотность пигмента
(тёмный тон)
Низкая плотность пигмента
(светлый тон)

Общий динамический диапазон в терминах плотности таким образом выглядит как разница между максимальной (Dmax) и минимальной (Dmin) плотностями пигмента. В отличие от степеней 2 для f-ступеней, плотность измеряется в степенях 10 (так же, как и шкала Рихтера для землетрясений). Таким образом, плотность 3.0 представляет контраст 1000:1 (поскольку 103.0 = 1000).

Исходный динамический
диапазон

 
Динамический
диапазон сканера

Вместо указания диапазона плотности производители сканеров обычно указывают только значение Dmax, поскольку Dmax - Dmin обычно приблизительно равно Dmax. Это потому, что в отличие от цифровых камер, сканер контролирует свой источник света, гарантируя минимальную засветку.

Для высокой плотности пигмента к сканерам применимы те же ограничения по шуму, что и для цифровых камер (поскольку оба они используют массив фотопикселей для измерения). Таким образом, измеримая Dmax тоже определяется шумом, присутствующим в процессе считывания светосигнала.

Сравнение

Динамический диапазон варьируется настолько широко, что его часто измеряют логарифмической шкалой, аналогично тому как крайне различные интенсивности землетрясений измеряются одной шкалой Рихтера. Здесь приведен максимальный измеримый (или воспроизводимый) динамический диапазон для различных устройств в любых предпочитаемых единицах (f-ступени, плотность и соотношение контраста). Наведите курсор на каждый из вариантов, чтобы их сравнить.

Выберите единицу измерения:
f-ступени плотность контрастность

Выберите тип диапазона:
Печать Сканеры Цифровые камеры Мониторы

Обратите внимание на огромную разницу между воспроизводимым динамическим диапазоном печати и измеримым сканерами и цифровыми камерами. Сравнивая с реальным миром, это разница между примерно тремя f-ступенями в облачный день с практически ровным отражённым светом и 12 и более f-ступенями в солнечный день с высококонтрастным отражённым светом.

Использовать вышеуказанные цифры следует с осторожностью: в действительности динамический диапазон отпечатков и мониторов сильно зависит от условий освещения. Отпечатки при неверном освещении могут не показать свой полный динамический диапазон, тогда как мониторы требуют практически полной темноты, чтобы реализовать свой потенциал — особенно плазменные экраны. Наконец, все эти цифры являются всего лишь грубыми приближениями; реальные значения будут зависеть от наработки прибора или возраста отпечатка, поколения модели, ценового диапазона и т.д.

Учтите, что контрастность мониторов зачастую сильно завышена, поскольку для них не существует стандарта производителя. Контрастность свыше 500:1 зачастую является результатом очень тёмной чёрной точки, а не более яркой белой. В связи с этим нужно уделять внимание как контрастности, так и яркости. Высокая контрастность без сопутствующей высокой яркости может быть полностью сведена на нет даже рассеянным светом от свечи.

Человеческий глаз

Человеческий глаз может в действительности воспринимать более широкий динамический диапазон, чем это обычно возможно для камеры. Если учитывать ситуации, в которых наш зрачок расширяется и сужается, адаптируясь к изменению света, наши глаза способны видеть в диапазоне величиной почти 24 f-ступеней.

С другой стороны, для корректного сравнения с одним снимком (при постоянной диафрагме, выдержке и ISO) мы можем рассматривать только мгновенный динамический диапазон (при неизменной ширине зрачка). Для полной аналогии нужно смотреть в одну точку сцены, дать глазам адаптироваться и не смотреть при этом ни на что другое. В этом случае существует большая несогласованность, поскольку чувствительность и динамический диапазон наших глаз меняется в зависимости от яркости и контраста. Наиболее вероятным будет диапазон из 10-14 f-ступеней.

Проблема этих чисел в том, что наши глаза исключительно адаптивны. Для ситуаций исключительно неяркого звёздного света (когда наши глаза используют палочки для ночного видения) они достигают даже более широких мгновенных динамических диапазонов (см. «Цветовое восприятие человеческого глаза»).

Глубина цветности и измерение динамического диапазона

Даже если бы чья-то камера могла охватить большую часть динамического диапазона, точность, с которой измерения света преобразуются в цифры, может ограничить применимый динамический диапазон. Рабочая лошадка, которая занимается преобразованием непрерывных результатов измерений в дискретные числовые значения, называется аналогово-цифровым преобразователем (АЦП). Точность АЦП может быть описана в терминах разрядности, аналогично разрядности цифровых изображений, хотя следует помнить о том, что эти концепции неявляются взаимозаменяемыми. АЦП создаёт значения, которые хранятся в файле формата RAW.

Разрядность АЦП Контрастность Динамический диапазон
f-ступени плотность
8 256:1 8 2.4
10 1024:1 10 3.0
12 4096:1 12 3.6
14 16384:1 14 4.2
16 65536:1 16 4.8

Примечание: вышеприведенные значения отражают только точность АЦП и не должны
использоваться для интерпретации результатов для 8 и 16-битных файлов изображений.
Далее, для всех значений показан теоретический максимум, как если бы шум отсутствовал.
Наконец, эти цифры справедливы только для линейных АЦП, а разрядность
нелинейных АЦП необязательно коррелирует с динамическим диапазоном.

В качестве примера, 10 бит глубины цветности преобразуются в диапазон возможных яркостей 0-1023 (поскольку 210 = 1024 уровня). Предполагая, что каждое значение на выходе АЦП пропорционально актуальной яркости изображения (то есть, удвоение значения пикселя означает удвоение яркости), 10-битная разрядность может обеспечить контрастность не более 1024:1.

Большинство цифровых камер используют АЦП с разрядностью от 10 до 14 бит, так что их теоретически достижимый максимальный динамический диапазон составляет 10-14 ступеней. Однако такая высокая разрядность всего лишь помогает минимизировать постеризацию изображения, поскольку общий динамический диапазон обычно ограничен уровнем шума. Подобно тому, как большая разрядность изображения необязательно подразумевает большую глубину его цветности, наличие в цифровой камере высокоточного АЦП необязательно означает, что она в состоянии записать широкий динамический диапазон. На практике динамический диапазон цифровой камеры даже не приближается к теоретическому максимуму АЦП; в основном 5-9 ступеней — это всё, чего можно ожидать от камеры.

Влияние типа изображения и кривая цветности

Могут ли файлы цифровых изображений в действительности записать полный динамический диапазон высококлассных приборов? В интернете наблюдается большое непонимание взаимосвязи разрядности изображения с записываемым динамическим диапазоном.

Для начала следует разобраться, говорим мы о записываемом или отображаемом динамическом диапазоне. Даже обыкновенный 8-битный файл формата JPEG может предположительно записать бесконечный динамический диапазон — предполагая, что во время преобразования из формата RAW была применена кривая цветности (см. статью о применении кривых и динамическом диапазоне), и АЦП имеет требуемую разрядность. Проблема кроется в использовании динамического диапазона; если слишком малое число бит распространить на слишком большой диапазон цвета, это может привести к постеризации изображения.

С другой стороны, отображаемый динамический диапазон зависит от коррекции гаммы или кривой цветности, подразумеваемой файлом изображения или используемой видеокартой и монитором. Используя гамму 2.2 (стандарт для персональных компьютеров), было бы теоретически возможно передать динамический диапазон из практически 18 f-ступеней (об этом расскажет глава о коррекции гаммы, когда будет написана). И даже в этом случае он мог бы пострадать от сильной постеризации. Единственным на сегодня стандартным решением для получения практически бесконечного динамического диапазона (без видимой постеризации) является использование файлов расширенного динамического диапазона (HDR) в Photoshop (или другой программе, например, с поддержкой формата OpenEXR).

- Back to Photography Tutorials -