Макрообъективы

Макрообъективы без преувеличения открывают новый мир фотографируемых предметов. Макросъёмка может даже заставить кого-то совершенно по-другому взглянуть на повседневные предметы. Однако, несмотря на все восхитительные возможности макросъёмки, она зачастую подразумевает крайнюю дотошность и технические ухищрения. Поскольку детальность зачастую является ключевым фактором, макроснимки требуют исключительной резкости изображений, что в свою очередь требует хорошей фотографической техники. Неожиданную важность приобретают концепции увеличения, размера сенсора, глубины резкости и дифракции. Данная углублённая статья посвящена техническому обзору взаимосвязи этих концепций.


пример макроснимка

Снимок работы Петра Наскрецкого, автора книги «Наименьшая величина».

Увеличение

Увеличение описывает размер, в котором предмет будет представлен на сенсоре камеры, в сравнении с его размером в действительности. Например, если изображение на сенсоре камеры составляет четверть размера оригинала, говорят, что увеличение составляет 1:4 или 0.25X. Другими словами, чем больше увеличение, тем меньше должен быть предмет, чтобы заполнить кадр.

диаграмма соотношения дистанции фокусировки и увеличения
Снимок при увеличении 0.25X
(предмет дальше)
Снимок при увеличении 1.0X
(предмет ближе)

Данная диаграмма является исключительно иллюстративной; пропорции не соблюдены.

Увеличение зависит от двух свойств объектива: фокусного расстояния и дистанции фокусировки. Чем ближе может сфокусироваться объектив, тем большее увеличение он обеспечивает — что естественно, поскольку чем ближе расположен предмет, тем больше он кажется. Аналогично, увеличение фокусного расстояния (зума) обеспечивает большее увеличение, даже если минимальная дистанция фокусировки остаётся прежней.

 Дистанция фокусировки*
 Фокусное расстояние**  мм
  Увеличение

* Измеряется как расстояние от сенсора камеры до предмета. См. ниже примечание о точности.
** ФР собственно объектива (без множителей). См. ниже примечание о кроп-факторе сенсоров.

Настоящие макрообъективы способны передать на сенсор камеры изображение предмета размером с сам предмет (1:1 или 1.0X макро). Строго говоря, объектив относят к категории «макро», только если он позволяет достичь увеличения 1:1. Однако слово «макро» зачастую вольно употребляют для снимков крупным планом, который означает увеличение порядка 1:10 или более. Здесь и далее мы будем использовать именно такое расширительное толкование слова «макро»...

Примечание о точности: производители объективов не пришли к единому определению дистанции фокусировки; одни используют расстояние от сенсора до предмета, другие измеряют от передней линзы или от центра объектива. Если максимальное увеличение известно или измеримо, результаты будут точнее, чем показывает вышеприведенный калькулятор.

Примечание о размере сенсоров: если вы используете полнокадровый объектив с уменьшенным сенсором, свет, попадающий на сенсор, будет увеличен сильнее, чем при съёмке сенсором полного кадра — несмотря на то, что фокусное расстояние будет одинаковым. Происходит это потому, что уменьшенный сенсор обрезает внешние части изображения — вовсе не из-за увеличения объективом. Если вы хотите знать истинный или эффективный коэффициент увеличения, вам понадобится применить множитель фокусного расстояния (кроп-фактор), — но только при использовании полнокадровых объективов с уменьшенными сенсорами.

Увеличение и размер сенсора

Однако, несмотря на свою полезность, увеличение ничего не говорит о том, что зачастую более всего интересует фотографов: каков наименьший размер предмета, заполняющего кадр? К сожалению, это зависит от размеров сенсора камеры, которые на сегодняшний день бывают крайне различны.

макроснимок монеты монета при увеличении 0.25X в сравнении с сенсорами различных размеров
Полный размер предмета
(диаметр 24 мм)
Компактная камера при 0.25X
Полнокадровая зеркальная камера при 0.25X

Вышеприведенные примеры показаны в масштабе.
Пример компактной камеры использует сенсор размера 1/1.7" (7.6 x 5.7 мм).
25 центов США выбраны, поскольку сенсор полного кадра 35 мм имеет аналогичный размер.

На примере выше, несмотря на то, что коэффициент увеличения в обоих случаях составляет 0.25X, изображение целиком заполняет уменьшенный сенсор компактной камеры. При прочих равных, сенсор меньшего размера таким образом лучше подходит для съёмки меньших предметов.

 Увеличение X
 Тип камеры
  Наименьший предмет, заполняющий кадр*

* измеряется по короткой стороне кадра

Прирост объектива и истинная f-ступень

Чтобы объектив мог фокусироваться всё ближе, его механизм должен отодвигаться от сенсора камеры (это называется «прирост»). Для малого увеличения прирост незначителен, так что ожидаемое расстояние от сенсора до условной линзы объектива примерно эквивалентно фокусному расстоянию. Однако по мере приближения к увеличению 0.25-0.5X или более линза удаляется от сенсора настолько, что начинает вести себя так, как-будто фокусное расстояние увеличивается. При увеличении 1:1 линза отдаляется от сенсора камеры на двойное фокусное расстояние:

диаграмма фокусного расстояния в зависимости от прироста объектива
Выберите увеличение: 1:2 (0.5X) 1:1 (1.0X)

Примечание: диаграмма подразумевает, что объектив симметричен (увеличение зрачка = 1).

Наиболее важным последствием прироста является прирост истинной f-ступени объектива*. Этому сопутствуют все обычные характеристики, включая увеличение глубины резкости, требуемой длины выдержки и подверженности влиянию дифракции. Фактически, единственная причина, по которой мы говорим о «истинной» f-ступени, состоит в том, что многие камеры всё ещё показывают нескомпенсированную f-ступень (какой она была бы при малом увеличении), при том что f-ступень действительно меняется во всех отношениях.

* Техническое примечание:
Причина изменения f-ступени кроется в том, что в действительности она зависит от фокусного расстояния объектива. Собственно f-ступень определяется как отношение диаметра отверстия диафрагмы к фокусному расстоянию. Например, объектив 100 мм с диаметром диафрагмы 25 мм будет иметь f-ступень величиной f/4. В случае макрообъектива f-ступень увеличивается, поскольку увеличивается эффективное фокусное расстояние — не потому, что меняется собственно диафрагма (диаметр которой остаётся прежним вне зависимости от увеличения).

На пальцах, истинная f-ступень при увеличении 1:1 примерно на 2 ступени больше, чем значение, которое показывает ваша камера. Таким образом диафрагма f/2.8 становится ближе к f/5.6, а f/8 больше похожа на f/16, и т.д. Однако это редко требует от фотографа дополнительных действий, поскольку система экспозамера камеры автоматически компенсирует недостаток света, рассчитывая параметры экспозиции:

макроснимок муравьёв — недодержан макроснимок муравьёв
Падение освещённости при увеличении 2X Выдержка увеличена в 8 раз

Автор снимка: Пётр Наскрецкий.

При другом увеличении истинную f-ступень можно оценить следующим образом:

Истинная F-ступень = F-ступень x (1 + увеличение)

Например, если вы снимаете при увеличении 0.5X, истинная f-ступень объектива при f/4 будет где-то между f/5.6 и f/6.3. На практике это означает, что время выдержки потребуется увеличить в 2-3 раза, а следовательно, для съёмки может понадобиться штатив.

Техническое примечание:
Вышеприведенная формула наилучшим образом работает для нормальных объективов (с фокусным расстоянием порядка 50 мм). Её использование для макрообъективов, фокусное расстояние которых намного больше, например, 105 мм или 180 мм, приведёт к некоторой недооценке истинной f-ступени объектива. Те, кого интересуют более точные подсчёты, должны использовать следующую формулу, а также знать увеличение диафрагмы (отношение входного и выходного размеров диафрагмы) своего объектива:

Истинная F-ступень = F-ступень x (1 + увеличение / увеличение диафрагмы)

У макрообъектива Canon 180 мм f/3.5L увеличение диафрагмы составляет 0.5 при 1:1, например, что приводит к приросту f-ступени ещё на 50% относительно первоначальной формулы. Однако использование формулы с учётом увеличения диафрагмы для большинства ситуаций, вероятно, не является практичным. Наибольшая проблема в том, что увеличение диафрагмы изменяется в зависимости от дистанции фокусировки, что приводит к появлению ещё одной формулы, которую производители объективов публикуют редко.

Другими последствиями истинной диафрагмы являются возможность автофокусировки и яркость видоискателя. Например, большинство зеркальных камер теряют способность к автофокусировке, когда минимальная f-ступень становится больше, чем f/5.6. Как следствие, объективы с минимальной f-ступенью, большей чем f/2.8, утратят автофокус при увеличении 1:1. Вдобавок, видоискатель при большом увеличении может стать слишком тёмным. Чтобы увидеть, на что это может быть похоже, установите на своей камере диафрагму f/5.6 или f/8 и нажмите кнопку предпросмотра глубины резкости.

Макро и глубина резкости

Чем большему увеличению подвергается предмет, тем меньше становится глубина резкости. В макросъёмке и фото крупного плана она может стать тончайшей — зачастую всего несколько миллиметров:

снимок змеи крупным планом с малой глубиной резкости

Пример снимка крупным планом с ничтожной глубиной резкости.
Авторство принадлежит Петру Наскрецкому.

Как следствие, макроснимки обычно требуют больших f-ступеней для получения приемлемой глубины резкости. Иначе, можно извлечь максимум из этой минимальной глубины резкости, выровняв предмет съёмки по плоскости наиболее резкого фокуса. В любом случае часто бывает полезно знать, какая глубина резкости доступна для работы:

Калькулятор макроглубины резкости
 Увеличение
 Тип камеры
 Диафрагма
  Глубина резкости

Примечание: глубина резкости определеяется резкостью отпечатка размером 20x25 см при просмотре на расстоянии одного шага; применяется стандартный кружок нерезкости 0.032 мм для камер с полным кадром 35 мм.
При увеличении свыше 1X вывод в мкм (1 микрон составляет 1/1000 мм)

Заметьте, что глубина резкости не зависит от фокусного расстояния; как следствие, например, объектив 100 мм при 0.5X имеет ту же глубину резкости, что и объектив 65 мм при 0.5X, при одинаковой f-ступени. Кроме того, в отличие от фотографии с малым увеличением, глубина резкости остаётся симметричной относительно дистанции фокусировки (расстояния до ближнего и дальнего краёв глубины резкости равны).

Техническое примечание:
Вразрез с первым впечатлением, уменьшенные сенсоры камер не подразумевают никакого преимущества в глубине резкости. Несмотря на то, что сенсор меньшего размера будет иметь увеличенную глубину резкости при той же f-ступени, такое сравнение не является справедливым, поскольку сенсор большего размера имеет больший дифракционный предел диафрагмы для аналогичного отпечатка. Если использовать отпечаток с одинаковым дифракционным пределом, глубина резкости для обоих сенсоров будет одинакова. Единственным следствием из уменьшения размера сенсора будет меньшее время экспозиции, требуемое для достижения той же глубины резкости.

Дифракционный предел макросъёмки

Дифракцией называется оптический эффект, который ограничивает разрешение ваших фотографий — вне зависимости от того, как много мегапикселей у вашей камеры (см. статью о дифракции). По мере увеличения f-ступени подверженность снимков дифракции нарастает; при высоких f-числах дифракция становится настолько выраженной, что начинает влиять на разрешение изображения (достигается «дифракционный предел»). Дальнейшее увеличение f-ступени приводит только к деградации разрешения.

Однако при сильном увеличении дифракционный предел определяется не параметром настройки камеры, а истинной f-ступенью. Это учитывается ниже:

Калькулятор дифракционного предела макросъёмки
 Увеличение
 Тип камеры
 Разрешение  Мегапикселей
 Камера учитывает* истинную f-ступень?
Дифракционный предел f-ступени

Имейте в виду, что дифракция подступает постепенно, так что числа диафрагмы, чуть большие или меньшие предела, не станут внезапно выглядеть хуже или лучше, соответственно. Более того, рассматриваемый предел является теоретическим; итоговые результаты будут также зависить от характеристик конкретного объектива. Наконец, всё это справедливо для просмотра на экране в масштабе 100%; маленькие или большие отпечатки могут означать, что дифракционный предел f-ступени будет в действительности больше или меньше указанного, соответственно.

При макросъёмке некоторое дифракционное сглаживание практически всегда является приемлемым в обмен на увеличение глубины резкости.. Не бойтесь увеличивать f-ступень за дифракционный предел. В целом для цифровых зеркальных камер диафрагмы порядка f/11-f/16 дают хороший компромисс между глубиной резкости и чёткостью, но порой для ещё большей (но и более размытой) глубины резкости требуется f/22 и более. В конечном счёте лучшим способом определить оптимальный компромисс является эксперимент — с использованием конкретного объектива и предмета съёмки.

Рабочая дистанция и фокусное расстояние

Рабочая дистанция макрообъектива описывает расстояние между передней линзой объектива и предметом. Оно отличается от наименьшей дистанции фокусировки, которое (обычно) измеряется от сенсора камеры до предмета.

снимок лягушки крупным планом

Автор снимка: Пётр Наскрецкий

Рабочее расстояние является полезным индикатором того, насколько велика вероятность побеспокоить предмет съёмки. В то время как малая дистанция может быть вполне уместна для фотографов, которые снимают цветы и другие неподвижные объекты, она может спугнуть насекомых и других подвижных созданий (например, побудить пчелу улететь с цветка). Вдобавок, предмет на лужайке или в листве может сделать сокращение рабочего расстояния невозможным или непрактичным. Кроме того, малые рабочие расстояния потенциально способствуют блокированию естественного освещения и созданию тени вокруг предмета съёмки.

При неизменном увеличении рабочая дистанция обычно увеличивается пропорционально фокусному расстоянию. Зачастую это наиболее важное соображение при выборе из нескольких макрообъективов с различным фокусным расстоянием. Например, макрообъектив Canon 100 мм f/2.8 имеет рабочую дистанцию всего порядка 15 см при увеличении 1:1, в то время как Canon 180 мм f/3.5L имеет более комфортную рабочую дистанцию порядка 30 см при том же увеличении. Зачастую это достаточно большая разница, чтобы иметь возможность сфотографировать предмет и не спугнуть его при этом.

Однако другим важным фактором является то, что меньшие фокусные расстояния зачастую обеспечивают более объёмный снимок с эффектом присутствия. Это особенно характерно для макрообъективов, поскольку увеличение эффективного фокусного расстояния приводит к сжатию перспективы. Использование наименьшего возможного фокусного расстояния позволит снизить этот эффект и обеспечить большее ощущение глубины.

Качество снимков крупным планом

Большое увеличение предмета увеличивает также и недостатки объектива, в том числе хроматические аберрации (пурпурные или синие гало вокруг высококонтрастных границ, особенно по углам изображения), искажения пропорций и размывание. Все они зачастую наиболее заметны при использовании обычного (не макро) объектива при большом увеличении; на контрасте, настоящий макрообъектив обеспечивает оптимальное качество изображения вблизи минимальной дистанции фокусировки.

Следующий пример снят с увеличением 0.3X компактной камерой на наименьшей дистанции фокусировки. Поскольку она имеет стандартный (не макро) объектив, качество изображения отчётливо страдает:

снимок монеты крупным планом при увеличении 0.3X central crop
corner crop
Крупный план компактной камерой при 0.3X Фрагменты масштаба 100%

Данные эффекты сохраняются даже после агрессивного повышения резкости снимка.

Обратите внимание, насколько хроматические аберрации и размывание изображения сказываются сильнее на удалении от центра изображения (фрагмент в красной рамке). Хотя центральный фрагмент (в синей рамке) не настолько резок, насколько хотелось бы, хроматические аберрации на нём значительно менее выражены.

- Back to Photography Tutorials -